

Possibilities for Ground Validation of GPM Snowfall Measurements in Northern Europe

Jarmo Koistinen, Heikki Pohjola

Finnish Meteorological Institute

Earth Observation/

Weather Radars

Why should we perform GV in Northern Europe:

- Observational facilities and data
- Experience in snowfall measurements
- Climate

Most of Finland belongs to boreal forest climate:

- 100-220 snow cover days/year
- Average snow depth in March 20-90 cm

Preliminary Research Consortium METEOROLOGISKA INSTITUTE FINNISH METEOROLOGICAL INSTITUTE Preliminary Research Consortium

Finnish Meteorological Institute (FMI, prof. J.Koskinen)

- Precipitation QPE and QPF, quality issues, prec. phase
- Polarimetric scattering modeling (DDA-model), scatterer diagnostics

Technical University of Helsinki (HUT, prof. M.Hallikainen)

- Plans for a reference Ka-band vertically pointing radar
 University of Helsinki (UH, prof. M. Kulmala)
- Hydrometeor and aerosol microphysics and radar polarimetry

Finnish Environment Institute (Dr. Vehviläinen)

Hydrological end user

NASA, Environment Canada (funding possible from Finnish Agency for Technology and Innovation in 2007)

European union FP7 (RAINCLOUDS)

Helsinki Testbed 2005 – 2015?

A high latitude research and development facility

Precipitation measurements

- Circles: 4 operational Doppler radars, 1 polarimetric Doppler radar for research
- 2 vertically pointing POSSradars
- Dots: 80 gauges
- Big diamonds: FD12P optical scatterometers
- Triangles: ultrasonic snow depth
- Squares: weighing gauges

http://testbed.fmi.fi

Public real time data during the campaigns.

Precipitation type at ground

- Hydrometeor phase analysis (rain, sleet, snow) based on Kriging-analysis of SYNOP data (T,RH). Resolution 5 min & 1 km (extrapolation).
- Time-space variable R(Z)
 & S(Z_e) -relations.
- Operational since 1999:

Grey background: snow

Blue background: rain

Pink background: mixed

FMI weather radar network

•8 C-band Dopplers Volumetric V, dBZ (dBT) W) archived since 2000 •3D data availability 99.3 % incl. maintenance and telecommunications in 2005 •15 persons / 10 person years in Technical Services, Research & Weather Service © Maanmittaustaitos, tupa nro 30/MYY/00

BALTRAD: Composites of radar reflectivity up to 2012 (at least)

- _ More than 30 radars in 11 countries: BALTRAD
- Radar Data Centre at SMHI, Sweden (Daniel Michelson)
- **Continuous operation** since October 1, 1999
- _ Resolutions: 2×2 km, 15 minutes, 0.4 dBZ

http://www.smhi.se/brdc

Ground reference process of GPM snowfall measurements

SFWE = SnowFall Water Equivalent

Major challenge: Sampling differences between GPM, radars and surface

Main factor: Vertical Profile of Reflectivity (VPR)

The FMI operational VPR treatment contains:

- Automatic VPR-type classification
- Correction to obtain surface precipitation
- Archive of ~1 million VPRs

24 h accumulated precipitation June 14, 2004, 17 UTC

500 m PsCAPPI radars "as usual"

Estimated surface precipitation

GPM snowfall measurements require 20 dBs more sensitivity than those of rainfall

Conclusions

A high quality ground validation of GPM snowfall measurements will require:

- Maximal sensitivity of the satellite DPRs
- Good sensitivity, density and high availability of the 3D volume data of a ground based radar network
- Proper climate (frequent snowfall on a flat terrain)
- A collection of several *in situ* snowfall reference instruments at ground level.
- Stable correction algorithms of standard in situ snowfall measurements (e.g. wind deflection)
- Good knowledge of the sampling differences between ground level – radar – satellite and their adjustment algorithms, especially the effects of VPR

Back up slides

Examples of measured snowfall VPRs

LUOSTO 08.06. 2001 18:30 ANJALANKOSKI 17.04. 2001 06:15 10 km Layer 1 10 km Layer 1 2370-5570 n 161-2561 m Max 3.9 dBZ Max 12.9 dBZ Clutter FL 1592 n 9 9 Evap 13.8 ZL 88 n Overhanging snow RR opp. ⁸ (virga, Altostratus, 8 161 n 2161 m ~20 % of all cloud/prec 7 VPRs) 6 6 311 530 604 718 5 5 517 749 674 716 914 4 Snow, evaporation and 968 1241 2147 1363 1295 residual clutter 3 3 585 267 64 867 3008 **481**3 2 2 1 1 2047 236 209 923 1826 ٥ 10 20 30 dBZ -30 -20 -10 -30 -20 -10 10 20 30 dBZ

Example: radar-surface difference in a snowfall case

Vertical profiles of reflectivity (VPR) in winter introduce large biases (S) in the radar estimates of surface

Helsinki Testbed measurements

All other stations shown except Road Weather.

Average WS distance 9 km (FMI regular 50 km).

IC lightning system + CG lightning system

Doppler radars provide winds

- Horizontal drifting of snow particles easily 50-100 km during their fall to ground.
- In boundary layer winds
 obtainable 90 % of time in
 winter (ice crystals from the
 ground ?) with sensitive
 radars

3 and 12-hour gaugeadjusted accumulated precipitation + gauges-only analysis

- 2×2 km horizontal resolution
- Every 3 and 12 hours
- 32-bit depth
- Wind corrected gauge observations
- 3-hour BALTRAD area
- _ 12-hour BALTEX Region (see example)

DDA-simulation of polarimetric scattering

Snowfall, snow cover, sleet, insects, birds....

- Modeling of polarimetric quantities applying a general scattering model for remote sensing applications (DDA)
- So far the DDA-model has been applied in microwave scattering from snow cover and from the boreal forest
- Comparison to real measurements => algorithms for diagnostics

Link: EUMETSAT Hydrology SAF

- SAF = Satellite Application Facility under EUMETSAT contract
- HSAF lead by Servizio
 Meteorologico dell'Aeronautica,
 Italy
- Hydrology SAF
 - Precipitation (Italy)
 - Soil Moisture (Austria)
 - Snow parameters (Finland)
- Mainly EUMETSAT operational satellites, but also other (research) satellites are used, when applicable

and snow information in European hydrology and water

Fig. 01 – Logic of the H-SAF Development phase.

Mapping of snow water equivalent and snow depth from space-borne microwave radiometer data for EUMETSAT H-SAF activities

- Technology: assimilation of satellite data with in situ observations (SD/weather stations or SWE/snow courses)
- Applications: operational hydrology and climatology
- Users: hydrological models (e.g. floods), climate change studies, hydropower industry, weather forecasting, tourism and transportation

AMSR-derived SD for 2 Feb. 2004

Climatological profiles based on 220 000 measured precipitation profiles

Radar bias i.e. VPR correction for 500 m PsCAPPI and dry snow S(Z_e)

ANJALANKOSKI 17.04. 2001 15:30

10 km	Layer 1 161-3161 n Max 28.7 dBZ Prec.		
9	BB 161 n Zdown -1 n 0.0 dBZ Zup 561 n		
8	6.5 dBZ FL 361 n		
7			
6			
5			
4	153		
3	509 953 1390 2167 3217		
2	3218 3031 4356 4584 4808		
1	4987 4988 4950 4955 4636		
-30-20-10 0 10 20 30 dBZ			

Yearly average sampling bias for 500 m PsCAPPI

Snowfall sample size 106 000 VPRs

Beam overshooting

- Shallow snowfall often detected only at short ranges
- Adding Probability of Detection (POD) of precipitation at echo free bins will enhance their quality.

Examples of snowfall detection ranges in the worst cases

(elevation 0.4°, MDS at 1 km ~ -45 dBZ)

CDFs of the detection range estimate the probability of detection (POD) as a function of range

Nov 20-31, 2004

Jul 27 – Aug 5, 2004

Visualisation of POD in the products

Rings of POD isolinesBackground

Background shading

A wide international voluntary will exists among the scientists to participate the GPM GV. However, this will appears only as a vaporware, i.e. no Terms of Reference have been agreed on the following issues:

- Responsible persons for international management and planning (WG discussion clubs are helpful but have no mandate to decide).
- Definitions and terminology (e.g. site categories, such as "supersite").
- Forms of institutional commitments (institutes, not individual scientists share the data).
- Which kind of GV measurements are needed (list of products and their preferencies).
- IT architecture, data periods, formats and policies (virtual data warehouse suggested in Taipei WS).
- Work plan and schedule (e.g. start testing with a few selected prototype sites in near future, suggested in Taipei WS).
- How many international GV contributions are reasonable (must be representative – e.g.science, climates - but acceptance of all voluntary contributions will lead to chaos)?